Comparison between XL and Gröbner Basis Algorithms

G. Ars¹, J.-C. Faugère², H. Imai³, M. Kawazoe⁴, M. Sugita⁵

1 University of Rennes, 2 University of Paris 6, 3 University of Tokyo, 4
Osaka Prefecture University, 5 IPA Japan

Algebraic Attack

- Algebraic attacks are among the most efficient attacks for public key cryptosystems, block ciphers and stream ciphers. They try to recover a secret key by solving a system of algebraic equations.
- J. Patarin '95 (applied to Matsumoto-Imai Public Key Scheme)
- For Eurocrypt 2000, N. Courtois, A. Klimov, J. Patarin and A. Shamir presents a new algorithm to solve polynomial systems on finite fields: XL.
- Courtois-Pieprzyk '02 (applied to block ciphers): XSL
- etc.

Goal of this talk: Find a link between XL and Gröbner basis methods.

- Goal of this talk: Find a link between XL and Gröbner basis methods.
- Motivations : Complexity bound of well-studied Gröbner bases can be extended to XL algorithm.

- Goal of this talk: Find a link between XL and Gröbner basis methods.
- Motivations : Complexity bound of well-studied Gröbner bases can be extended to XL algorithm.
- Cryptographic results of XL algorithm gave results with Gröbner bases algorithm and conversely.

- Goal of this talk: Find a link between XL and Gröbner basis methods.
- Motivations: Complexity bound of well-studied Gröbner bases can be extended to XL algorithm.
- Cryptographic results of XL algorithm gave results with Gröbner bases algorithm and conversely.
- Gröbner bases computation is implemented on many programs: very efficient implementation in lastest version of Magma (Magma V2.11: http://magma.maths.usyd.edu.au/users/allan/gb/)

- Gröbner basis algorithm = a general method to solve a system of algebraic equations
- XL: proposed as an efficient algorithm for algebraic attacks
- A special condition: In cryptographic scheme, a system of algebraic equations we are interested in has a unique solution over its defining field. (XL was proposed as a powerful technique to solve such special systems.)

Recently, by using the algorithms F_4 and F_5 , 80-bit HFE was first cryptanalyzed. (Faugère-Joux '03)

- PRECENTLY, by using the algorithms F_4 and F_5 , 80-bit HFE was first cryptanalyzed. (Faugère-Joux '03)
- Time results with an implementation under Magma are presented on A. Steel's web page (http://magma.maths.usyd.edu.au/users/allan/gb/).

- PRECENTLY, by using the algorithms F_4 and F_5 , 80-bit HFE was first cryptanalyzed. (Faugère-Joux '03)
- Time results with an implementation under Magma are presented on A. Steel's web page (http://magma.maths.usyd.edu.au/users/allan/gb/).
- Why did algebraic cryptanalysis based on these Gröbner basis algorithms exceed XL?

- PRECENTLY, by using the algorithms F_4 and F_5 , 80-bit HFE was first cryptanalyzed. (Faugère-Joux '03)
- Time results with an implementation under Magma are presented on A. Steel's web page (http://magma.maths.usyd.edu.au/users/allan/gb/).
- Why did algebraic cryptanalysis based on these Gröbner basis algorithms exceed XL?
- We give an answer for this question in this presentation.

If the XL algorithm terminates, it will also terminate with a lexicographic ordering.

- If the XL algorithm terminates, it will also terminate with a lexicographic ordering.
- ullet XL can be viewed as a redundant variant of a Gröbner basis algorithm F_4 .

- If the XL algorithm terminates, it will also terminate with a lexicographic ordering.
- ullet XL can be viewed as a redundant variant of a Gröbner basis algorithm F_4 .
- We study the XL algorithm on semi-regular sequences.

- If the XL algorithm terminates, it will also terminate with a lexicographic ordering.
- ullet XL can be viewed as a redundant variant of a Gröbner basis algorithm F_4 .
- We study the XL algorithm on semi-regular sequences.
- We complete this study on generic systems with a comparison of the XL algorithm and the Buchberger algorithm for a cryptosystem HFE.

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 \updownarrow

$$\exists i \in \{1, \ldots, n\}, \text{st } \forall j < i,$$
 $lpha_j = eta_j \ \& \ lpha_i > eta_i$

DRL Order

$$1 \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 \updownarrow

$$\exists i \in \{1, \ldots, n\}, \operatorname{st} \forall j < i,$$
 $lpha_j = eta_j \, \& \, lpha_i > eta_i$

DRL Order

$$x_{1}^{\alpha_{1}} \dots x_{n}^{\alpha_{n}} > x_{1}^{\beta_{1}} \dots x_{n}^{\beta_{n}} \qquad x_{1}^{\alpha_{1}} \dots x_{n}^{\alpha_{n}} > x_{1}^{\beta_{1}} \dots x_{n}^{\beta_{n}}$$

$$\updownarrow$$

$$\exists i \in \{1, \dots, n\}, \text{ st } \forall j < i,$$

$$\alpha_{j} = \beta_{j} \& \alpha_{i} > \beta_{i}$$

$$\sum_{i} \alpha_{i} > \sum_{i} \beta_{i} \text{ or}$$

$$\sum_{i} \alpha_{i} = \sum_{i} \beta_{i} \& \exists i \in \{1, \dots, n\},$$

$$\text{ st } \forall j > i, \alpha_{j} = \beta_{j} \& \alpha_{i} < \beta_{i}$$

Leading Monomial of a polynomial : LM(P)

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\updownarrow$$

$$\exists i \in \{1,\ldots,n\}, ext{st} \ orall j < i,$$
 $lpha_j = eta_j \ \& \ lpha_i > eta_i$

DRL Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^$

Leading Monomial of a polynomial : LM(P) Example:

$$P=x_1^6x_2^5x_3^3x_4^6+x_1^4x_2^9x_3^4x_4^5+x_1^4x_2^{10}$$
,

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\updownarrow$$

$$\exists i \in \{1, \ldots, n\}, \operatorname{st} \forall j < i,$$
 $lpha_j = eta_j \ \& \ lpha_i > eta_i$

DRL Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\alpha_1} \dots x_n^{\beta_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^$

Leading Monomial of a polynomial : LM(P) Example:

$$P=x_1^6x_2^5x_3^3x_4^6+x_1^4x_2^9x_3^4x_4^5+x_1^4x_2^{10}$$
, for Lexicographic order

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\updownarrow$$

$$\exists i \in \{1, \ldots, n\}, \text{st } \forall j < i,$$
 $lpha_j = eta_j \ \& \ lpha_i > eta_i$

DRL Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^$

Leading Monomial of a polynomial : LM(P) Example:

$$P=x_1^6x_2^5x_3^3x_4^6+x_1^4x_2^9x_3^4x_4^5+x_1^4x_2^{10}$$
, for DRL order

Need a monomial ordering

Lexicographic Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$

$$\updownarrow$$

$$\exists i \in \{1, \ldots, n\}, \text{st } \forall j < i,$$
 $lpha_j = eta_j \ \& \ lpha_i > eta_i$

DRL Order

$$x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$
 $x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^{\alpha_1} \dots x_n^{\alpha_n} = x_1^$

Leading Monomial of a polynomial : LM(P) Example:

$$P=x_1^6x_2^5x_3^3x_4^6+x_1^4x_2^9x_3^4x_4^5+x_1^4x_2^{10}$$
, for DRL order

The S-polynomial of a pair of polynomials: Spol(f,g) =

$$rac{lcm(LM(f),LM(g))}{LT(f)}.f - rac{lcm(LM(f),LM(g))}{LT(g)}.g$$

Gröbner basis (2)

Gröbner basis : $G = \{g_1, \ldots, g_s\}$ of an ideal I is a Gröbner basis if for all $f \in I$, there is g_i st $LM(g_i)$ divide LM(f). $G = \{g_1, \ldots, g_s\}$ of I is a Gröbner basis iff $\forall i, j$, $\mathcal{S}pol(g_i, g_j) \xrightarrow{G} 0$.

Gröbner basis (2)

Gröbner basis : $G = \{g_1, \ldots, g_s\}$ of an ideal I is a Gröbner basis if for all $f \in I$, there is g_i st $LM(g_i)$ divide LM(f). $G = \{g_1, \ldots, g_s\}$ of I is a Gröbner basis iff $\forall i, j$, $\mathcal{S}pol(g_i, g_j) \xrightarrow{G} 0$.

D-Gröbner basis : $G=\{g_1,\ldots,g_s\}$, g_i homogeneous, of I is a D-Gröbner basis iff $\forall i \neq j$ and $degree(lcm(LM(g_i),LM(g_j))) \leq D$,

$$\mathcal{S}pol(g_i,g_j) \xrightarrow{G} 0.$$

Solving systems over finite fields

Find solution of a system

$$f_1(z_1,\ldots,z_n)=0,\ldots,f_m(z_1,\ldots,z_n)=0$$
 with (z_1,\ldots,z_n) in the field \mathbb{F}_q .

Consider the ideal I generated by f_1, \ldots, f_m and field equations $X_i^q - X_i$.

Solving systems over finite fields

Find solution of a system

$$f_1(z_1,\ldots,z_n)=0,\ldots,f_m(z_1,\ldots,z_n)=0$$
 with (z_1,\ldots,z_n) in the field \mathbb{F}_q .

Consider the ideal I generated by f_1, \ldots, f_m and field equations $X_i^q - X_i$.

Important cases:

- ullet The field \mathbb{F}_2 .
- The field \mathbb{F}_p , $p\gg n$ and p prime number, the field equation are useless.

Gröbner basis and Gaussian Elimination

D. Lazard,

Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations, 1983.

Let us consider the Macaulay matrix for a degree $\leq d$.

with $i_1, i_2, i_3, \dots \leq m$ and $degree(m'_k) \leq d - degree(f_{i_k})$. For d big enough, a Gaussian Elimination give a Gröbner basis.

Gröbner basis and Gaussian Elimination

D. Lazard,

Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations, 1983.

Let us consider the Macaulay matrix for a degree $\leq d$.

with $i_1, i_2, i_3, \dots \leq m$ and $degree(m'_k) \leq d - degree(f_{i_k})$.

For d big enough, a Gaussian Elimination give a Gröbner basis.

Theorem: Let be $\langle f_1, \ldots, f_m \rangle$, $m \leq n$, a regular sequence, (X_1, \ldots, X_n) generic coordonates, then a Gröbner basis with a DRL order is given with

$$d \leq d_1 + \cdots + d_m - n + 1.$$

F_4 and F_5 algorithm

 $m{F}_4$ algorithm : Simultaneous reduction of all $m{S}-$ polynomials. Combinaison of Buchberger criteria and very efficient linear algebra.

F_4 and F_5 algorithm

F₄ algorithm: Simultaneous reduction of all S—polynomials. Combinaison of Buchberger criteria and very efficient linear algebra.

• F₅ algorithm: Construct a matrice iteratively on the degree and on the number of equations and replace Buchberger criteria with new criteria to avoid reduction to zero

M. Bardet, J.-C. Faugère and B. Salvy

Complexity of Gröbner basis computation for Semi-regular

Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems

Definition of a new familly of systems : Semi-regular sequences

M. Bardet, J.-C. Faugère and B. Salvy

Complexity of Gröbner basis computation for Semi-regular

Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems

Definition of a new familly of systems : Semi-regular sequences

Conjecture: Almost all systems are a semi-regular

sequences (random, generic,...).

M. Bardet, J.-C. Faugère and B. Salvy

Complexity of Gröbner basis computation for Semi-regular

Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems

Definition of a new family of systems: Semi-regular sequences Conjecture: Almost all systems are a semi-regular sequences (random, generic,...).

Matrix constructed by F_5 have full rank.

M. Bardet, J.-C. Faugère and B. Salvy

Complexity of Gröbner basis computation for Semi-regular

Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems

Definition of a new familly of systems: Semi-regular sequences Conjecture: Almost all systems are a semi-regular sequences (random, generic,...).

- ullet Matrix constructed by F_5 have full rank.
- ullet Example : For a system of n equation with n variables on \mathbb{F}_2 , asymptotic degree reached :

$$d \simeq rac{n}{11.11} + 1.00 n^{rac{1}{3}} + \mathcal{O}(rac{1}{n^{rac{1}{3}}})$$

The XL algorithm

Algorithm (The XL algorithm). For a positive integer **D**, execute the following steps:

- $m{ ilde{ ilde{P}}}$ Multiply: Generate all the products $\prod_{j=1}^r x_{\ell_j} * f_i \in \mathcal{I}_{\mathcal{A}}$ with $r \leq D \deg(f_i)$.
- **●** Linearize: Consider each monomial in the x_i of $degree \leq D$ as a new variable and perform the Gaussian elimination on the equations obtained in Step 1. The ordering on the monomials must be such that all the terms containing one variable (say x_1) are eliminated last.
- Solve: Assume that step 2 yields at least one univariate equation in the powers of x_1 . Solve this equation over the finite fields (e.g., with Berlekamp's algorithm).
- Repeat: Simplify the equations and repeat the process to find the values of the other variables.

Remark

- We can replace Step 1 of the XL algorithm by considering f_i^* the *homogenization* of f_i : $f_i^* = Z^d f(\frac{x_1}{Z}, \dots, \frac{x_n}{Z}) \in k[\mathbf{x}, Z]$ and products mf_i^* with m a monomial with degree $D \deg(f_i^*)$.
- All the computation is exactly the same. So the behavior of XL is the same on the homogenization of the system A as on A.

Remarks

The two first steps correspond to methods in article:

D. Lazard, *Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations*, 1983.

Remarks

The two first steps correspond to methods in article:

D. Lazard, *Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations*, 1983.

Implementation in Magma to make practical test.

Remarks

The two first steps correspond to methods in article:

D. Lazard, *Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations*, 1983.

Implementation in Magma to make practical test.

Partial monomial order used in XL algorithm Lemma:

XL terminates XL terminates for a degree $D \iff$ for a degree D with a Lexicographic order

${f XL}$ computation and ${f D} ext{-Gr\"{o}bner}$ basis

Lemma : $\{f_1,\ldots,f_m\}$ list of polynomials Step 1&2 for XL

${f XL}$ computation and ${f D} ext{-}{f Gr\"{o}bner}$ basis

homogenization of f: $f^*=z^df(\frac{x_1}{z},\ldots,\frac{x_n}{z})$ with d=degree(f).

${f XL}$ computation and ${f D} ext{-}{f Gr\"{o}bner}$ basis

${f XL}$ computation and ${f D} ext{-}{f Gr\"{o}bner}$ basis

D-Gröbner basis

homogenization of f: $f^*=z^df(\frac{x_1}{z},\ldots,\frac{x_n}{z})$ with d=degree(f).

Homogeneous/Affine system

Behavior of degree during Gröbner basis computation

Condition. 1

The system \mathcal{A} has only one solution $(x_1, \ldots, x_n) = (a_1, \ldots, a_n)$ in k^n . (i.e. \mathcal{A} has a solution (a_1, \ldots, a_n) in k^n and no other solution in k^n .)

Condition. 1

The system \mathcal{A} has only one solution $(x_1, \ldots, x_n) = (a_1, \ldots, a_n)$ in k^n . (i.e. \mathcal{A} has a solution (a_1, \ldots, a_n) in k^n and no other solution in k^n .)

Most stream ciphers will satisfy Condition. 1 with sufficiently large number of sequences

Condition. 1

The system \mathcal{A} has only one solution $(x_1, \ldots, x_n) = (a_1, \ldots, a_n)$ in k^n . (i.e. \mathcal{A} has a solution (a_1, \ldots, a_n) in k^n and no other solution in k^n .)

- Most stream ciphers will satisfy Condition. 1 with sufficiently large number of sequences
- HFE satisfies Condition. 1 with only 1 pair of (P/C).

Condition. 2

The reduced Gröbner basis of the ideal

$$\widetilde{\mathcal{I}}_{\mathcal{A}} = \langle f_1, \dots, f_m, x_1^q - x_1, \dots, x_n^q - x_n \rangle$$
 is $\{x_1 - a_1, \dots, x_n - a_n\}.$

Condition. 2

The reduced Gröbner basis of the ideal

$$\widetilde{\mathcal{I}}_{\mathcal{A}} = \langle f_1, \dots, f_m, x_1^q - x_1, \dots, x_n^q - x_n \rangle$$
 is $\{x_1 - a_1, \dots, x_n - a_n\}.$

Under Condition. 2, Gröbner bases may be obtained easily.

Theorem. Let \mathcal{A} be a system of multivariate equations $f_j = 0, j = 1, 2, \ldots, m$ in $k[x_1, \ldots, x_n]$ with $k = \mathbb{F}_q$. Let $\widetilde{\mathcal{I}}_{\mathcal{A}}$ be the ideal $\langle f_1, \ldots, f_m, x_1^q - x_1, \ldots, x_n^q - x_n \rangle$. Then,

a solution
$$(x_1,\ldots,x_n)=(a_1,\ldots,a_n)\in k^n$$
 of ${\mathcal A}$ is unique in k^n

$$\widehat{\mathcal{I}}_{\mathcal{A}} = \langle x_1 - a_1, \dots, x_n - a_n \rangle.$$

Theorem. Let \mathcal{A} be a system of multivariate equations $f_j = 0, j = 1, 2, \ldots, m$ in $k[x_1, \ldots, x_n]$ with $k = \mathbb{F}_q$. Let $\widetilde{\mathcal{I}}_{\mathcal{A}}$ be the ideal $\langle f_1, \ldots, f_m, x_1^q - x_1, \ldots, x_n^q - x_n \rangle$. Then,

a solution $(x_1,\ldots,x_n)=(a_1,\ldots,a_n)\in k^n$ of ${\mathcal A}$ is unique in k^n

$$\widehat{\mathcal{I}}_{\mathcal{A}} = \langle x_1 - a_1, \dots, x_n - a_n \rangle.$$

i.e.

Condition. 1 \iff Condition. 2

Begin with D=1. Do XL described as in Definition for $\mathcal A$. If you cannot obtain the solution, set D:=D+1 and do XL again for $\mathcal A$ with the new D: Simple

- Begin with D=1. Do XL described as in Definition for \mathcal{A} . If you cannot obtain the solution, set D:=D+1 and do XL again for \mathcal{A} with the new D: Simple
- Begin with D=1. Iterate 'Multiply' and 'Linearize' described as in Definition for $\mathcal A$ by adding new equations obtained by 'Linearize' to $\mathcal A$. If you cannot solve the resulting system, then return to the original $\mathcal A$, set D:=D+1 and iterate the same procedure as for D=1. Repeat until you obtain the solution: Iterative

- Begin with D=1. Do XL described as in Definition for \mathcal{A} . If you cannot obtain the solution, set D:=D+1 and do XL again for \mathcal{A} with the new D: Simple
- Begin with D=1. Iterate 'Multiply' and 'Linearize' described as in Definition for $\mathcal A$ by adding new equations obtained by 'Linearize' to $\mathcal A$. If you cannot solve the resulting system, then return to the original $\mathcal A$, set D:=D+1 and iterate the same procedure as for D=1. Repeat until you obtain the solution: Iterative
- Begin with D=1. Do XL described as in Definition for \mathcal{A} . If you cannot obtain the solution, then set D:=D+1, replace \mathcal{A} by the resulting system obtained by 'Linearize' in the previous XL and do XL again for the new \mathcal{A} and D. Repeat until you obtain the solution: Incremental

- Begin with D=1. Do XL described as in Definition for \mathcal{A} . If you cannot obtain the solution, set D:=D+1 and do XL again for \mathcal{A} with the new D: Simple
- Begin with D=1. Iterate 'Multiply' and 'Linearize' described as in Definition for $\mathcal A$ by adding new equations obtained by 'Linearize' to $\mathcal A$. If you cannot solve the resulting system, then return to the original $\mathcal A$, set D:=D+1 and iterate the same procedure as for D=1. Repeat until you obtain the solution: Iterative
- Begin with D=1. Do XL described as in Definition for \mathcal{A} . If you cannot obtain the solution, then set D:=D+1, replace \mathcal{A} by the resulting system obtained by 'Linearize' in the previous XL and do XL again for the new \mathcal{A} and D. Repeat until you obtain the solution: Incremental
- Begin with D=1. Iterate 'Multiply' and 'Linearize' described as in Definition for $\mathcal A$ by adding new equations obtained by 'Linearize' to $\mathcal A$. If you cannot solve the resulting system $\mathcal A'$, then replace $\mathcal A$ by $\mathcal A'$, set D:=D+1 and iterate the same procedure as for D=1. Repeat until you obtain the solution: Both iterative and incremental

F4-like Representation of XL algorithm

Definition. A critical pair of two polynomials (f_i, f_j) is an element $M^2 \times k[\mathbf{x}] \times M \times k[\mathbf{x}]$, $Pair(f_i, f_j) := (lcm_{ij}, t_i, f_i, t_j, f_j)$ such that

$$egin{array}{lll} lcm(Pair(f_i,f_j)) &=& lcm_{ij} = \mathrm{LM}(t_if_i) = \mathrm{LM}(t_jf_j) \ &=& lcm(\mathrm{LM}(f_i),\mathrm{LM}(f_j)). \end{array}$$

(2) For a critical pair $p_{ij} = Pair(f_i, f_j)$, $deg(lcm_{ij})$ is called the degree of p_{ij} and denoted by $deg(p_{ij})$. Let P be a list of critical pairs. For $p = Pair(f, g) \in P$ and $d \in \mathbb{N}$, we define two functions $XLLeft(p, d) = \{(t, f) | t \in M, deg(t * f) \leq d\}$, and $XLRight(p, d) = \{(t, g) | t \in M, deg(t * g) \leq d\}$. We write $XLLeft(P, d) = \bigcup_{p \in P} XLLeft(p, d)$ and $XLRight(P, d) = \bigcup_{p \in P} XLRight(p, d)$. Left $(p_{ij}) = (t_i, f_i)$, Right $(p_{ij}) = (t_j, f_j)$. Left $(p) = \bigcup_{p_{ij} \in P} Left(p_{ij})$, Right $(p) = \bigcup_{p_{ij} \in P} Right(p_{ij})$.

F4-like Representation of XL algorithm

For a list of critical pairs P and a positive integer $d \in \mathbb{N}$, we set

$$Sel_{XL}(P,d) := \{ p \in P \mid \deg(lcm(p)) \le d \}.$$

For a list P of critical pairs of a given set,

$$Sel_{F_4}(P) := \{p \in P | \deg(lcm(p)) = d\}$$

where $d := min\{\deg(lcm(p)), p \in P\}$.

F4-like Representation of XL

F_4 -like representation of XL	F_4
$\int F$: a finite subset of $k[x]$	$f(\mathbf{x})$ $f(\mathbf{x})$
Input: $\left\{egin{array}{ll} F & a \text{ if the Subset of } \mathcal{R}[x] \ Sel = Sel_{XL} \end{array} ight.$	Input: $\left\{egin{array}{l} m{F} : ext{a finite subset of } m{k}[\mathbf{x}] \ m{Sel} = m{Sel}_{m{F_4}} \end{array} ight.$
Output: a finite subset of $k[x]$.	Output: a finite subset of $k[x]$.
$G:=F, ilde{F_0}^+:=F$ and $d:=0$	$G:=F$, $ ilde{F}_0^+:=F$ and $d:=0$
$P:=\{Pair(f,g) f,g\in G ext{ with } f eq g\}$	$P := \{Pair(f,g) f,g \in G ext{ with } f eq g\}$
While $P eq \phi$ Do	While $P eq \phi$ Do
d:=d+1	d:=d+1
$P_d := Sel(P,d)$	$P_d := Sel(P,d)$
$L_d := \mathrm{XLLeft}(P,d) \cup \mathrm{XLRight}(P,d)$	$L_d := \operatorname{Left}(P_d) \cup \operatorname{Right}(P_d)$
$P:=P\setminus P_d$	$P:=P\setminus P_d$
$ ilde{F}_d^+ := \operatorname{Reduction}(L_d)$	$ ilde{F}_d^+ := \operatorname{Reduction}(L_d)$
For $h \in ilde{F}_d^+$ Do	For $h \in ilde{F}_d^+$ Do
$P:=P\cup\{Pair(h,g) g\in G\}$	$P:=P\cup\{Pair(h,g) g\in G\}$
$G:=G\cup\{h\}$	$G:=G\cup\{h\}$
Return G	Return G —

F4-like Representation of XL algorithm

Reduction (same in F_4 -like representation of XL and in F_4)

```
Input: a finite subset L of M \times k[\mathbf{x}]
Output: a finite subset of k[\mathbf{x}] (possibly an empty set). F := \operatorname{Symbolic} \operatorname{Preprocessing}(L)
\tilde{F} := \operatorname{Reduction} to Row Echelon Basis of F w.r.t. <
\tilde{F}^+ := \{f \in \tilde{F} | \operatorname{LM}(f) \not\in \operatorname{LM}(F) \}
Return \tilde{F}^+
```

F4-like Representation of XL algorithm

Symbolic Preprocessing

F_4 -like representation of XL

Input: a finite subset L of $M \times k[x]$ Output: a finite subset of k[x]

 $F := \{t * f \mid (t, f) \in L\}$

Return F.

F_4

```
Input: a finite subset L of M \times k[x]
Output: a finite subset of k[x]
 F := \{t * f \mid (t, f) \in L\}
Done := LM(F)
While M(F) \neq Done Do
  Done := Done \cup \{m\}
   (m \in M(F) \setminus Done)
  If m is top reducible modulo G Then
     m = m' * LM(f)
      for some f \in G and some m' \in M
     F := F \cup \{m' * f\}
Return F
```

XL and Gröbner bases algorithms

Theorem. Let \mathbf{F} be a finite set of polynomials in $\mathbf{k}[\mathbf{x}]$. Then XL algorithm computes a Gröbner basis \mathbf{G} for the ideal $\langle \mathbf{F} \rangle$ in $\mathbf{k}[\mathbf{x}]$ such that $\mathbf{F} \subset \mathbf{G}$.

Semi-regular sequences

Consider a system of m quadratic equations on n variables

Semi-regular sequences

Consider a system of m quadratic equations on n variables

For F_5 algorithm:

$$\frac{(1+y)^n}{(1+y^2)^m}$$

For XL algorithm:

$$\frac{(1+y)^n}{(1-y)(1+y^2)^m} - \frac{1+y}{1-y}$$


```
XL algorithm

Matrix

size
```


Semi-regular sequences: n=32

For random system of n quadratic equations on n variables, univariate polynomial will have a degree 2^n .

On HFE systems

For real system:

Lower degree reached

Example: Public Key Cryptosystem HFE proposed by J. Patarin composed by a system of n quadratic equations with n variables.

On HFE systems

HFE: n variables and degree 24 for univariate polynomial.

On HFE systems

HFE: n variables and degree 24 for univariate polynomial.

HFE: Time computation on F_2

HFE: *n* variables and degree 24 for univariate polynomial with Magma 2.10.

HFE: Time computation on F_{16}

HFE: *n* variables and degree 24 for univariate polynomial with Magma 2.10.

We compared XL with known Gröbner basis algorithms.

- We compared XL with known Gröbner basis algorithms.
- We showed that to solve a system of algebraic equations treated in XL is equivalent to calculate the reduced Gröbner basis of the ideal associated with the system.

- We compared XL with known Gröbner basis algorithms.
- We showed that to solve a system of algebraic equations treated in XL is equivalent to calculate the reduced Gröbner basis of the ideal associated with the system.
- We showed XL is a redundand version of the F_4 algorithm.

- We compared XL with known Gröbner basis algorithms.
- We showed that to solve a system of algebraic equations treated in XL is equivalent to calculate the reduced Gröbner basis of the ideal associated with the system.
- We showed XL is a redundand version of the F_4 algorithm.
- We showed the result of simulations comparing XL with F_5 , which is an improved version of F_4 .

- We compared XL with known Gröbner basis algorithms.
- We showed that to solve a system of algebraic equations treated in XL is equivalent to calculate the reduced Gröbner basis of the ideal associated with the system.
- We showed XL is a redundand version of the F_4 algorithm.
- We showed the result of simulations comparing XL with F_5 , which is an improved version of F_4 .
- Our results imply that XL is not so efficient as it was expected.

XL algorithm
Matrix
size

 F_4 algorithm Matrix size

 F_5 algorithm Matrix size

XL algorithm Matrix size F_4 algorithm Matrix size

 F_5 algorithm Matrix size

XL algorithm
Time
Experiments

 F_4 algorithm

Time

Experiments

 F_5 algorithm

Time

Experiments

Homogeneous semi-regular sequence

Definition. Homogeneous semi-regular sequence:

Let f_1,\ldots,f_m be a sequence of m homogeneous polynomials (i.e. for all monomial t of $f_i,\deg(t)=\deg(f_i)$ in $\mathcal{R}_n^h:=\mathbb{F}_2[x_1,\ldots,x_n]/\langle x_1^2,\ldots,x_n^2\rangle$ or $\mathbb{Q}[x_1,\ldots,x_n]$), and $\mathcal{I}=\langle f_1,\ldots,f_m\rangle$ an ideal of \mathcal{R}_n^h or $\mathbb{Q}[x_1,\ldots,x_n]$.

- The degree of regularity of $\mathcal I$ is the minimal degree d such that $\{LT(f) \mid f \in \mathcal I, \deg(f) = d\}$ is exactly the set of monomials of degree d in $\mathcal R_n^h$, denoted by $D_{reg}(\mathcal I)$.
- f_1,\ldots,f_m is a homogeneous semi regular sequence on \mathbb{F}_2 if $\mathcal{I}
 eq \mathcal{R}_n^h$ and for $i\in\{1,\ldots,m\}$, if $g_if_i=0$ in $\mathcal{R}_n^h/\langle f_1,\ldots,f_{i-1}
 angle$ and $\deg(g_if_i)< D_{reg}(\mathcal{I})$ then $g_i=0$ in $\mathcal{R}_n^h/\langle f_1,\ldots,f_{i-1},f_i
 angle$.
- f_1,\ldots,f_m is a homogeneous semi regular sequence on $\mathbb Q$ if $\mathcal I
 eq \mathbb Q[x_1,\ldots,x_n]$ and for $i\in\{1,\ldots,m\}$, if $g_if_i=0$ in $\mathbb Q[x_1,\ldots,x_n]/\langle f_1,\ldots,f_{i-1}
 angle$ and $\deg(g_if_i)< D_{reg}(\mathcal I)$ then $g_i=0$ in $\mathbb Q[x_1,\ldots,x_n]/\langle f_1,\ldots,f_{i-1}
 angle$.

Affine semi-regular sequence

Affine semi-regular sequence: Let f_1,\ldots,f_m be a sequence of m polynomials, and $\mathcal{I}=\langle f_1,\ldots,f_m\rangle$ an ideal of $\mathbb{F}_2[x_1,\ldots,x_n]/\langle x_1^2-x_1,\ldots,x_n^2-x_n\rangle$ or $\mathbb{Q}[x_1,\ldots,x_n]$. Let f_i^h the homogeneous part of the largest degree of f_i .

- f_1, \ldots, f_m is a semi-regular sequence if f_1^h, \ldots, f_m^h is a homogeneous semi-regular sequence.
- the degree of regularity of ${\cal I}$ is the degree of regularity of $\langle f_1^h,\ldots,f_m^h
 angle$, denoted by D_{reg} .