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Algebraic Attack
B

Algebraic attacks are among the most efficient attacks
for public key cryptosystems, block ciphers and stream
ciphers. They try to recover a secret key by solving a
system of algebraic equations.

J. Patarin '95 (applied to Matsumoto-Imai Public Key
Scheme)

For Eurocrypt 2000, N. Courtois, A. Klimoy, J. Patarin
and A. Shamir presents a new algorithm to solve
polynomial systems on finite fields: XL.

Courtois-Pieprzyk '02 (applied to block ciphers): XSL
etc.

-
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Goal of this talk

- .

® Goal of this talk : FInd a link between XL and Grobner
basis methods.
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Goal of this talk
-

Goal of this talk : Find a link between XL and Grdbner
basis methods.

Motivations :
Complexity bound of well-studied Grobner bases can
be extended to XL algorithm.

Cryptographic results of XL algorithm gave results with
Grobner bases algorithm and conversely.

Grobner bases computation is implemented on many
programs : very efficient implementation in lastest
version of Magma (Magma V2.11 :
http://magma.maths.usyd.edu.au/users/allan/gb/)

-
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Grobner basis algorithm and XL

- .

#® Grobner basis algorithm = a general method to solve a
system of algebraic equations

#® XL : proposed as an efficient algorithm for algebraic
attacks

#® A special condition: In cryptographic scheme, a system
of algebraic equations we are interested in has a
unique solution over its defining field. (XL was
proposed as a powerful technique to solve such
special systems.)

o -
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Grobner basis algorithm and XL (2)

- .

#® Recently, by using the algorithms F, and F}, 80-bit
HFE was first cryptanalyzed. (Faugere-Joux '03)
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f #® Recently, by using the algorithms F, and F}, 80-bit T
HFE was first cryptanalyzed. (Faugere-Joux '03)

o Time results with an implementation under Magma are

presented on A. Steel’s web page
(http://magma.maths.usyd.edu.au/users/allan/gb/).
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Grobner basis algorithms exceed XL?
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Grobner basis algorithm and XL (2)

f #® Recently, by using the algorithms F, and F}, 80-bit T
HFE was first cryptanalyzed. (Faugere-Joux '03)

o Time results with an implementation under Magma are
presented on A. Steel’s web page
(http://magma.maths.usyd.edu.au/users/allan/gb/).

# Why did algebraic cryptanalysis based on these
Grobner basis algorithms exceed XL?

# We give an answer for this question in this
presentation.

o -
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Main results

- .

o If the XL algorithm terminates, it will also terminate
with a lexicographic ordering.
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Main results

- .

o If the XL algorithm terminates, it will also terminate
with a lexicographic ordering.

® XL can be viewed as a redundant variant of a Grobner
basis algorithm Fj.

#® We study the XL algorithm on semi-regular sequences.

#® We complete this study on generic systems with a
comparison of the XL algorithm and the Buchberger
algorithm for a cryptosystem HFE.
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Grobner Basis

-

Need a monomial ordering

Lexicographic Order DRL Order
w?l...wg“>az§31...a}ﬁn a:(fl...a:gn}acfl...wg“
d: € {1,...,n},stVj < 1, Yo > > B or
a; =B & a; > B Yoo =>.B; &3t € {1,...,n},
st Vg > i,aj :,83' & a; < B;

o -

Comparison between XL and Grdbner Basis Algorithms — p.7/44



Grobner Basis

-

Need a monomial ordering

Lexicographic Order

Bn

oy lo" B1
2 RN Sl 7 N 1

i€ {1,...,n},stVj < 1,

a; =B &a; > pB;

DRL Order
a:clxl ce o™ > w?l wgn

Yo > > B or
Yo =) ,;B8: &3t e {1,...,n},
st Vi > 1, a5 = B; & ay < B

Leading Monomial of a polynomial : LM ( P)

o

-
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Grobner Basis

-

Need a monomial ordering

Lexicographic Order DRL Order
w?l...wg“>azﬁ1...wﬁn a:(fl...a:gn}acﬁl...wg“
d: € {1,...,n},stVj < 1, Yo > > B or
a; =B & a; > B Yoo =>.B; &3t € {1,...,n},
st Vg > 1,5 = (3 & a; < B;

Leading Monomial of a polynomial : LM (P) Example:

__ ..6..5..3._.6 4,..9..4..5 4,..10
P = xlxixir, + rxirie32; + 70,5,

o -
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-

Grobner Basis

Need a monomial ordering

Lexicographic Order DRL Order
w?l...wg“>azﬁ1...a}ﬁn a:(fl...a:gn}acﬁl...wg“
d: € {1,...,n},stVj < 1, Yo > > B or
a; =B & a; > B Yoo =>.B; &3t € {1,...,n},
st Vg > 1,5 = (3 & a; < B;

Leading Monomial of a polynomial : LM (P) Example:
P = 2S2x3x3xS + xfxirsel + xix3’, for Lexicographic
order

-

Comparison between XL and Grdbner Basis Algorithms — p.7/44



Grobner Basis

-

Need a monomial ordering

Lexicographic Order DRL Order
w?l...wg“>azﬁ1...a}ﬁn a:(fl...a:gn}acﬁl...wg“
d: € {1,...,n},stVj < 1, Yo > > B or
a; =B & a; > B Yoo =>.B; &3t € {1,...,n},
st Vg > 1,5 = (3 & a; < B;

Leading Monomial of a polynomial : LM (P) Example:
P = xS2x3x3xs + xixirse] + xfxz’, for DRL order
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Grobner Basis

-

Need a monomial ordering

Lexicographic Order DRL Order
w?l...wg“>azﬁ1...wﬁn a:(fl...a:gn}acﬁl...wg“
d: € {1,...,n},stVj < 1, Yo > > B or
=B &a; > B; Yo =>.B; &3 € {1,...,n},
stVg > 1, a5 =65 & a; < B;

Leading Monomial of a polynomial : LM (P) Example:
P = xS2x3x3xs + xixirse] + xfxz’, for DRL order

The S-polynomial of a pair of polynomials: Spol(f, g)
lem(LM(f),LM(g)) f lem(LM(f),LM(g))

LT(f) LT(g) 9
| i -
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-

Grobner basis (2)

Grobner basis : G = {g1,...,9s} ofanideal I is a

Grobner basis
if for all f € I, thereis g; st LM (g;) divide LM (f).
G = {g1,.-..,9s} of I is a Grobner basis iff Vz, 3,

Spol(g;, gj) E) 0.

-
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-

Grobner basis (2)
B

Grobner basis : G = {g1,...,9s} ofanideal I is a
Grobner basis

if for all f € I, thereis g; st LM (g;) divide LM (f).
G = {g1,.-..,9s} of I is a Grobner basis iff Vz, 3,
Spol(gi, g5) — 0.

D-Grobner basis: G = {g1,...,9s}, g; homogeneous, of
I is a D-Gro6bner basis iff Vi #£ 3 and
degree(lem(LM/(g;), LM(g;))) < D,

Spol(gi,g;) E) 0.

-

Comparison between XL and Grdbner Basis Algorithms — p.8/44



Solving systems over finite fields

- .

Find solution of a system

fl(zla°°°7zn) — 07°°°7.fm(zla°°°7zn) = 0 with
(214 .+ .4 2pn) Inthe field F,.

x

Consider the ideal I generated by f1,..., fm and field
equations X7 — X;.

o -
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Solving systems over finite fields

- .

Find solution of a system

fl(zla°°°7zn) — 07°°°7.fm(zla°°°7zn) = 0 with
(214 .+ .4 2pn) Inthe field F,.

x

Consider the ideal I generated by f1,..., fm and field
equations X7 — X;.
Important cases :
® The field F,.

# Thefield F,, p > n and p prime number, the field
equation are useless.

o -
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Grobner basis and Gaussian Elimination
f D. Lazard, T

Grobner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations,
1983.

Let us consider the Macaulay matrix for a degree < d.

mi1 > M2 > M3... > Mp_2 > Mr_1 >~ ML
m’l X fil
4
mo X Ji
Mo, = 72 X Jiz
with 21, 22, 23, - - - < m and degree(m}) < d — degree(f;,).

For d big enough, a Gaussian Elimination give a Grobner basis.

o -
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Grobner basis and Gaussian Elimination
f D. Lazard, T

Grobner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations,
1983.

Let us consider the Macaulay matrix for a degree < d.

mi1 > M2 > M3... > Mp_2 > Mr_1 >~ ML
m’l X fil
4
mo X Ji
Mo, = 72 X Jiz
with 21, 22, 23, - - - < m and degree(m}) < d — degree(f;,).

For d big enough, a Gaussian Elimination give a Grobner basis.
Theorem: Letbe < f1,..., fm >, m < m, aregular sequence, (X1,...,Xn)
generic coordonates, then a Grébner basis with a DRL order is given with

d<di+:+dm—mn+1.

o -
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F, and F5 algorithm
- o

o F, algorithm :
Simultaneous reduction of all S —polynomials.
Combinaison of Buchberger criteria and very efficient
linear algebra.

o -
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F, and F} algorithm
B -

o F, algorithm :
Simultaneous reduction of all S —polynomials.
Combinaison of Buchberger criteria and very efficient
linear algebra.

® Fj5 algorithm :
Construct a matrice iteratively on the degree and on
the number of equations and replace Buchberger
criteria with new criteria to avoid reduction to zero

o -
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Semi-regular sequences

- .

M. Bardet,J.-C. Faugere and B. Salvy
Complexity of Grobner basis computation for Semi-regular
Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems
Definition of a new familly of systems : Semi-regular sequences

o -
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Semi-regular sequences

|7 M. Bardet,J.-C. Faugere and B. Salvy T
Complexity of Grobner basis computation for Semi-regular
Overdetermined sequences over GF(2) with solutions in GF(2).

Extend regular sequence on overdeterminate systems
Definition of a new familly of systems : Semi-regular sequences
Conjecture : Almost all systems are a semi-regular
sequences (random, generic,. .. ).

® Matrix constructed by F5 have full rank.

® Example : For a system of n equation with n variables on F5,
asymptotic degree reached :

1
1

~ 1.00n3 4+ O
11,11Jr + (n%)

o -
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-

Algorithm (The XL algorithm). For a positive integer D, execute the

The XL algorithm
-

following steps:

9

9

Multiply: Generate all the products []:_, ®,; * fi € Z 4 with
r < D — deg(f:).

Linearize: Consider each monomial in the x; of degree < D as a
new variable and perform the Gaussian elimination on the equations
obtained in Step 1. The ordering on the monomials must be such
that all the terms containing one variable (say x1) are eliminated
last.

Solve: Assume that step 2 yields at least one univariate equation in
the powers of x;. Solve this equation over the finite fields (e.g., with
Berlekamp’s algorithm).

Repeat: Simplify the equations and repeat the process to find the J
values of the other variables.
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Remark

- .

#® We can replace Step 1 of the XL algorithm by
considering f* the homogenization of f;:

fr=2%f(%,...,%) € k[x, Z] and products m f;
with m a monomial with degree D — deg(f).
o All the computation is exactly the same. So the

behavior of XL is the same on the homogenization of
the system A as on A.

o -
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Remarks

- .

The two first steps correspond to methods in article :

D. Lazard,Grobner bases, Gaussian Elimination and
Resolution of Systems of Algebraic Equations, 1983.

o -
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Implementation in Magma to make practical test.
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Remarks

- .

The two first steps correspond to methods in article :

D. Lazard,Grobner bases, Gaussian Elimination and
Resolution of Systems of Algebraic Equations, 1983.

Implementation in Magma to make practical test.

Partial monomial order used in XL algorithm

Lemma :
XL terminates XL terminates
for a degree D <—- for a degree D

with a Lexicographic order

o -
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XL computation and D-Grobner basis

- .

Lemma :
{fiseees fm} ~list of polynomials
Step 1&2 for XL




XL computation and D-Grobner basis

-

Lemma :

{f17°°°9fm}

homoge&nization

{f5,..

L f)

B

>list of polynomials
Step 1&2 for XL

Lhomogenization of f: f* = z%f(2,..., %) with d = degree(f). J
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Lemma :

{f17°°°7fm}

homoge&nization

{f5,..

L f)

B

>list of polynomials
Step 1&2 for XL

~list of polynomials

D-Grobner basis

Lhomogenization of f: f* = z%f(2,..., %) with d = degree(f). J

Comparison between XL and Grobner Basis Algorithms — p.16/44



XL computation and D-Grobner basis

-

Lemma :

{fla'“afm}

homoge&nization

{f5,..

Step 1&2 for XL

~list of polynomials
A

unhomogenization

L f)

D-Grobner basis
Lhomogenization of f: f* = z%f(2,..., %) with d = degree(f).

~list of polynomials

B

-
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Homogeneous/Affine system

- .

Degree
A Homogeneous
system
Affine system
=

Behavior of degree during Grobner basis computation
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Pre-assumption of the XL algorithm

-

Condition. 1 T
The system A has only one solution

(1505 ®pn) = (A1,...,ay) in k™. (i.e. A has a solution
(a1y...,ay,) in K™ and no other solution in k™.)

o -
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The system A has only one solution

(1505 ®pn) = (A1,...,ay) in k™. (i.e. A has a solution
(a1y...,ay,) in K™ and no other solution in k™.)

#® Most stream ciphers will satisfy Condition. 1 with
sufficiently large number of sequences
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Pre-assumption of the XL algorithm

-

Condition. 1 T
The system A has only one solution

(1505 ®pn) = (A1,...,ay) in k™. (i.e. A has a solution
(a1y...,ay,) in K™ and no other solution in k™.)

#® Most stream ciphers will satisfy Condition. 1 with
sufficiently large number of sequences

#® HFE satisfies Condition. 1 with only 1 pair of (P/C).

o -
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Pre-assumption of the XL algorithm

- .

Condition. 2
The reduced Grobner basis of the ideal

Lo = <.f19°°'7.fm9w(11_wla“'aw%_wn> &
{wl_alwﬂafpn_an}'

o -
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Pre-assumption of the XL algorithm

- .

Condition. 2
The reduced Grobner basis of the ideal

Lo = <.f19°°'7.fm9w(11_wlwﬂafvg_mn) &
{$1_a19°°°9$n_an}'

Under Condition. 2, Grobner bases may be obtained easily.

o -
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Pre-assumption of the XL algorithm

- .

Theorem. Let A be a system of multivariate equations
.f] — O) ] — 1,2,...,m m k[il?l,...,a?n] with k :Fq.

Leti’A be the ideal (f1yee oy Fms @] — T1y.v. 3 — xp).
Then,

a solution (x1,...,x,) = (a1,...,a,) € K™
of A is unique in k™

x

Ta= (1 —Q1,...,Tn — Q).

o -
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Pre-assumption of the XL algorithm

- .

Theorem. Let A be a system of multivariate equations
f;] — O) ] — 1,2,...,m m k[il?l,...,a?n] with k :Fq.

Leti’A be the ideal (f1yee oy Fms @] — T1y.v. 3 — xp).
Then,

a solution (x1,...,x,) = (a1,...,a,) € K™
of A is unique in k™

x

Ta= (1 —Q1,...,Tn — Q).
l.e.
Condition. 1 <—> Condition. 2

o -
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Various implementations of XL

- .

® Begin with D = 1. Do XL described as in Definition for .A. If you cannot obtain the
solution, set D := D + 1 and do XL again for .A with the new D: Simple

o -
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Various implementations of XL

® Begin with D = 1. Do XL described as in Definition for .A. If you cannot obtain the
solution, set D := D + 1 and do XL again for .A with the new D: Simple

® Begin with D = 1. Iterate 'Multiply’ and ’Linearize’ described as in Definition for .A
by adding new equations obtained by ’'Linearize’ to .A. If you cannot solve the
resulting system, then return to the original A, set D := D + 1 and iterate the
same procedure as for D = 1. Repeat until you obtain the solution: Iterative

o -
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Various implementations of XL

o, .

Begin with D = 1. Do XL described as in Definition for \A. If you cannot obtain the
solution, set D := D + 1 and do XL again for .A with the new D: Simple

® Begin with D = 1. Iterate 'Multiply’ and ’Linearize’ described as in Definition for .A
by adding new equations obtained by ’'Linearize’ to .A. If you cannot solve the
resulting system, then return to the original A, set D := D + 1 and iterate the
same procedure as for D = 1. Repeat until you obtain the solution: Iterative

® Beginwith D = 1. Do XL described as in Definition for .A. If you cannot obtain the
solution, then set D := D + 1, replace A by the resulting system obtained by
'Linearize’ in the previous XL and do XL again for the new A and D. Repeat until
you obtain the solution: Incremental

o -
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Various implementations of XL
., o

Begin with D = 1. Do XL described as in Definition for \A. If you cannot obtain the
solution, set D := D + 1 and do XL again for .A with the new D: Simple

® Begin with D = 1. Iterate 'Multiply’ and ’Linearize’ described as in Definition for .A
by adding new equations obtained by ’'Linearize’ to .A. If you cannot solve the
resulting system, then return to the original A, set D := D + 1 and iterate the
same procedure as for D = 1. Repeat until you obtain the solution: Iterative

® Beginwith D = 1. Do XL described as in Definition for .A. If you cannot obtain the
solution, then set D := D + 1, replace A by the resulting system obtained by
'Linearize’ in the previous XL and do XL again for the new A and D. Repeat until
you obtain the solution: Incremental

® Begin with D = 1. Iterate 'Multiply’ and ’Linearize’ described as in Definition for .A
by adding new equations obtained by ’'Linearize’ to .A. If you cannot solve the
resulting system A’, then replace .A by \A’, set D := D 4+ 1 and iterate the same
procedure as for D = 1. Repeat until you obtain the solution: Both iterative and
incremental

o -
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F4-like Representation of XL algorithm

fDeﬁnition. A critical pair of two polynomials (fi, f;) is an element T
M? x k[x] x M X k[x], Pair(fi, fj) := (lem;j, t;, fisti, f;) such that

lcm,,;j = LM(tz‘fi) — LM(tjfj)
= lem(LM(f;), LM(f;))-

lem(Pair(fi, f;))

(2) For a critical pair p;; = Pair(fi, f;), deg(lem;;) is called the
degree of p;; and denoted by deg(psj). Let P be a list of critical pairs.
For p = Pair(f,g) € P and d € N, we define two functions
XLLeft(p,d) = {(t, f)|t € M,deg(tx f) < d}, and
XLRight(p,d) = {(t,g)|t € M,deg(t *xg) < d}. We write
XLLeft(P,d) = U,cp XLLeft(p,d) and
XLRight(P,d) = U,c.p XLRight(p,d).
Left(pij) = (i, fi), Right(pi;) = (t5, f5).
LLeft(P) = UpijEP Left(pi;), Right(P) = qu‘,jep Right(pij). J
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F4-like Representation of XL algorithm
o -

For a list of critical pairs P and a positive integer d € N, we
set

Selxr(P,d) := {p € P | deg(lem(p)) < d}.
For a list P of critical pairs of a given set,

Selp,(P) := {p € P|deg(lcm(p)) = d}

where d := min{deg(lem(p)),p € P}.

o -
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F4-like Representation of XL
- .

F4-like representation of XL F4
Input: { F : afinite subset of k[x] Input: { F : afinite subset of k[x]
Sel = Selxr, Sel = Selp4

Output: a finite subset of k[x]. Output: a finite subset of k[x].
G::F,ﬁ‘d‘"::Fandd::O G::F,ﬁ‘(f::Fandd::O
P := {Pair(f,9)|f,g € Gwith f # g} | P := {Pair(f,g)|f, g € Gwith f # g}
While P # ¢ Do While P # ¢ Do

d:=d+1 d:=d+1

Py := Sel(P,d) P, := Sel(P, d)

Ly := XLLeft(P, d) U XLRight(P, d) Ly := Left(Pg) U Right(Py)

P:= P\ Py P:=P\ Py

ﬁ‘c_l'_ := Reduction(Lg) 13‘;_ := Reduction(Lg)

Forh € ﬁ‘c"t" Do Forh € ﬁ‘j Do

P := P U {Pair(h,g)|lg € G} P := P U {Pair(h,g)lg € G}
L G:=GU{h} G:=GU{h} J

Return G Return G
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F4-like Representation of XL algorithm
-

Reduction (same in Fy-like representation of XL and in Fy)
Input: a finite subset L of M X k[x]

Output: a finite subset of k[x] (possibly an empty set).
F := Symbolic Preprocessing(L)
F := Reduction to Row Echelon Basis of F w.rt. <
Ft = {f € FILM(f) ¢ LM(F)}

Return BT

o -
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F4-like Representation of XL algorithm
o .

Symbolic Preprocessing

F4-like representation of XL Fy
Input: a finite subset L of M X k[x] Input: a finite subset L of M X k[x]
Output: a finite subset of k[x] Output: a finite subset of k[x]
F:={t=f|(t f) € L} F:={t=f|(t f) € L}
Return F'. Done := LM(F)

While M (F') # Done Do
Done := Done U {m}
(m € M (F)\Done)
If 7 is top reducible modulo G Then
m = m/’ x LM(f)
forsome f € G andsome m’ € M
F:=FuU{m’ x f}
Return F

o -
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XL and Grobner bases algorithms

Theorem. Let F be a finite set of polynomials in k[x]|. Then
XL algorithm computes a Gréobner basis G for the ideal (F')
in k[x] such that F C G.

-

Comparison between XL and Grobner Basis Algorithms — p.27 /44



Semi-regular sequences

- .

Consider a system of m guadratic equations on n variables

o -
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Semi-regular sequences

- .

Consider a system of m guadratic equations on n variables

For F5 algorithm :
1+y)"
(1+y*)m™

For XL algorithm :

(14 y)" 1+ y
1—-y)A+y*)™ 11—y

o -
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Semi-regular sequences: m = n + 2

- .

35

30 A

N N
o [&)]
I I

Degree reached

10 1

5 - = XL algorithm

= F5 algorithm

o

I R
SR S L iVl

Nb of variables
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Semi-regular sequences: m = n + 2

-

o

10

Degree reached

-

o]
|

~
L

= XL algorithm

= F5 algorithm

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Nb of variables
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Semi-regular sequences: m = n + 2

- .

- XL algorithm

= = F5 algorithm

Degree reached

2 T T T T T T T T T T T T T T T T T T T T T T
32 42 52 62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 212 222 232 242 252

Nb of equations
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Semi-regular sequences: m = n + 2

Complexity : (size of the matrix)® -
XL algorithm
Matrix
o -



Semi-regular sequences: m = n + 2

-

Complexity : (size of the matrix)®

XL algorithm F, algorithm
Matrix > Matrix
size size
Buchberger

criteria
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Semi-regular sequences: m = n + 2

-

Complexity : (size of the matrix)®

XL algorithm F, algorithm F algorithm
Matrix > Matrix > Matrix
size sSize size

Full rank matrix

Buchberger F’5 criteria

criteria
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Semi-regular sequences: m = n + 2

o

Complexity : (size of the matrix)®

1E+16
1E+15 -
1E+14 -
1E+13 -
1E+12 +
1E+11 1
1E+10
1E+09 -
1E+08 -
1E+07 -
1E+06 -
100000
10000 -
1000 -
100 +
10 -

2
©
Q
%)
D
(o}
-l
[74]
=
o
t =
[T
o
o]
Z

1

— F5 algorithm
- XL algorithm

5 8

11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89
Nb of variables

-

-
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Semi-regular sequences: m = n + 2

- .

140

120 ~

100 -

o]
[e]
I

Degree reached

N
(o]
Il

20 A

= XL algorithm

= = F5algorithm
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

R P PP PEREPLOPPPELLLLE PP P
Nb of Variables

o -

Comparison between XL and Grobner Basis Algorithms — p.34/44



-

Semi-regular sequences: n = 32

70

60 -

Degree reached
8 5 3

)]
(=]

10 -

0

-

— XL algorithm

=— F5 algorithm

32 37 42 47 52 57 62 67 72 77 82 87 92 97
Nb of equations

-
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Semi-regular sequences: n = 32

70

60 -

Degree reached
8 5 S

N
(=]

10

0

-

— XL algorithm

= F5 algorithm

degree : n+1
A\

i

32 37 42 47 52

57 62 67 72 77 82 87 92 97
Nb of equations

-
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Semi-regular sequences: n = 32

=

70

— XL algorithm
60
= F5 algorithm
50 degree :2"
Ee)
)
S
S 40 -
e degree : n+1
S 4 ||
D 30 |
=
a
o)
\ -
10 - S
- - = = ==
0

32 37 42 47 52 57 62 67 72 77 82 87 92 97
Nb of equations

For random system of n quadratic equations on n
variables, univariate polynomial will have a degree 2™. J
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On HFE systems

For real system :
Lower degree reached
Example : Public Key Cryptosystem HFE proposed by J.

Patarin composed by a system of n quadratic equations
with n variables.

-
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On HFE systems

- .

HFE : n variables and degree 24 for univariate polynomial.

55
5 |
4.5
o
]
S
@ ‘7
)
p -
)
;d_, 3,5
(o)
)
(a]
3 4
V 4
V 4
2,5 o
l ]
’ = XL algorithm
’ = = Buchberger algorithm
2 T T T T T T T T {
8 9 10 11 12 13 14 15 16 17

Nb of elements

o -
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On HFE systems

- .

HFE : n variables and degree 24 for univariate polynomial.

55

5,

Degree reached

2,91 = XL algorithm
= = Buchberger algorithm
2 ! ! ‘ ‘
5 6 7 8 9 10

Nb of variables

o -
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HFE: Time computation on F5

- .

HFE : n variables and degree 24 for univariate polynomial
with Magma 2.10.

500

450 -

400 - |= = Buchberger Algorithm
= XL Algorithm

350 -

300 -

Time (s)
N
3

200 -
150 A
100

50 A

8 9 10 11 12 13 14 15 16 17
Nb of variables
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-

HFE: Time computation on Fig

HFE : n variables and degree 24 for univariate polynomial

500

450

400 +

350 +

300 +

Time (s)
g

200 ~

150

100 -

50

=

with Magma 2.10.

= = Buchberger Algorithm
== XL Algorithm
- - ’
e ———— = = w = = = = 7 ‘
5 6 7 8 9 10

-
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Conclusion

- .

#® We compared XL with known Grobner basis
algorithms.

o -
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Conclusion

- .

#® We compared XL with known Grobner basis
algorithms.

#® We showed that to solve a system of algebraic

equations treated in XL is equivalent to calculate the

reduced Grobner basis of the ideal associated with the
system.

o -
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Conclusion

- .

#® We compared XL with known Grobner basis
algorithms.

#® We showed that to solve a system of algebraic
equations treated in XL is equivalent to calculate the
reduced Grobner basis of the ideal associated with the
system.

® We showed XL is a redundand version of the F}y
algorithm.

o -
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Conclusion

=

We compared XL with known Grobner basis
algorithms.

We showed that to solve a system of algebraic
equations treated in XL is equivalent to calculate the
reduced Grobner basis of the ideal associated with the
system.

We showed XL is a redundand version of the F}y
algorithm.

We showed the result of simulations comparing XL
with F, which is an improved version of Fjy.

-
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Conclusion

=

We compared XL with known Grobner basis
algorithms.

We showed that to solve a system of algebraic
equations treated in XL is equivalent to calculate the
reduced Grobner basis of the ideal associated with the
system.

We showed XL is a redundand version of the F}y
algorithm.

We showed the result of simulations comparing XL
with F, which is an improved version of Fjy.

Our results imply that XL is not so efficient as it was
expected.

-
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Conclusion

- .

XL algorithm F, algorithm F5 algorithm
o Matrix > Matrix > Matrix
size size size

o -
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Conclusion

=

XL algorithm F, algorithm F algorithm
Matrix > Matrix > Matrix
size size size
XL algorithm F, algorithm F algorithm
Time > Time > Time
Experiments Experiments Experiments

-
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Homogeneous semi-regular sequence

Definition. Homogeneous semi-regular sequence :

Let f1,..., finbe a sequence of m homogeneous polynomials (i.e. for all monomial ¢ of

fi, deg(t) = deg(f;) N R :=Fa[x1,...,2n]/(x2,...,22) or Qa1,...,xzm]),
and Z = (f1,..., fm) anideal of R® or Q[z1,...,zx].

® The degree of regularity of Z is the minimal degree d such that
{LT(f)|f € Z,deg(f) = d} is exactly the set of monomials of degree d in
R, denoted by D .eq(Z).

® f,...,fm isahomogeneous semiregular sequence on Fy if T # ’R,f; and for
i€ {1,...,m} ifg;ifi =0InR”/(f1,...,f;_1) and
deg(gifi) < Dreg(Z)theng; = 0iNRE/{(f1,. s Fi—1, Fi)-

® f,...,fm isahomogeneous semiregular sequence on Q if

T # Q[z1y...,xn]andforz € {1,...,m},ifg;f; = 0in
Qe1,y...sxn]/{f1y-..,Ffi—1) anddeg(g;:fi) < D'reg(I) theng; = 0in
Q1. s xn]/{f1s. .. Fi1).

o -
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Affine semi-regular sequence

Affine semi-regular sequence : Let f1,..., fim be asequence of m polynomials,
and Z = (f1,-.., fm) anideal of Fa[@1,...,xn]/{(x] — ®1,..., 22 — x,) or
Qe1y...,xn]. Let f,f" the homogeneous part of the largest degree of f;.

® f,...,fm isasemiregular sequence if f{", c e f,,’}'% IS @a homogeneous
semi-regular sequence.

® the degree of regularity of Z is the degree of regularity of (fI*, ..., £, denoted
by Dyeg.

o -
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